Automated Lecture Transcription

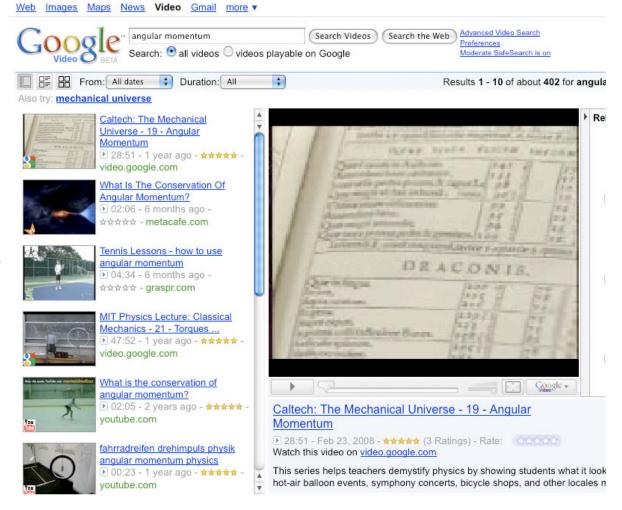
Brandon Muramatsu

mura@mit.edu MIT, Office of Educational Innovation and Technology

(Really, I'm just moonlighting as an OCWC Staffer...)

Citation: Muramatsu, B. (2009). Automated Lecture Transcription. Presented at the OpenCourseWare Global Meeting. Monterrey, Mexico. April 22, 2009.

Motivation



MIT OCW 8.01: Professor Lewin puts his life on the line in Lecture 11 by demonstrating his faith in the Conservation of Mechanical Energy.

- More & more academic videos on the Web
 - Universities recording lectures
 - Cultural organizations interviewing experts

Motivation

- Challenges
 - Volume
 - Search
 - Accessibility

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License (creativecommons.org/licenses/by-nc-sa/3.0/us/)

3

Research: Spoken Lecture Project

James Glass <u>SLS</u> glass@mit.edu

SPOKEN LANGUAGE SYSTEMS
 MIT Computer Science and Artificial Intelligence Laboratory

- Speech recognition & automated transcription of <u>lectures</u>
- Why lectures?
 - Conversational, spontaneous, starts/stops
 - Different from broadcast news, other types of speech recognition
 - Specialized vocabularies

Research: Spoken Lecture Project

James Glass <u>SLS</u> glass@mit.edu

SPOKEN LANGUAGE SYSTEMS MIT Computer Science and Artificial Intelligence Laboratory

- Processor, browser, workflow
 - web.sls.csail.mit.edu/lectures/
- Prototyped with lecture & seminar video
 - MIT OCW (~300 hours, lectures)
 - MIT World (~80 hours, seminar speakers)

Supported with iCampus MIT/Microsoft Alliance funding

What problems are we trying to solve? For Learners? For Content Producers?

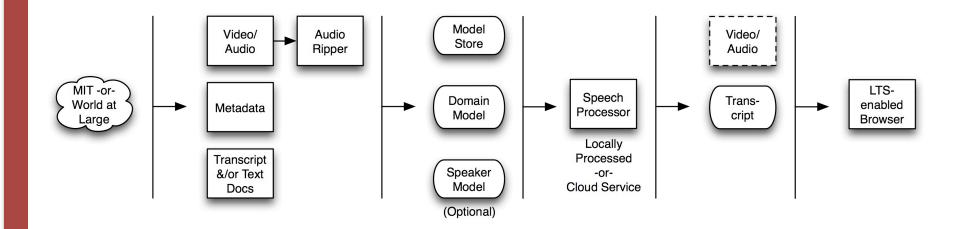
- Finding...(primary)
 - Content in videos (text metadata)
 - Specific "phrase" in video (via transcript)
 - Specific "concept" in video
- Facilitating...(secondary)
 - Accessibility (closed captioning)
 - Translations

Transition: Towards a Lecture Transcription Service

- Develop a prototype production service
 - MIT, University of Queensland
 - Engage external partners (hosted service?, community?)
- Requirements gathering
 - Internal MIT customers (OCW, AMPS)
 - External (OpenCast, UC Berkeley, Others)

MIT Projects/Customers

- OpenCourseWare
 - (Production support)
 - Existing videos & audio, new video
 - Lecture notes, slides, etc. for domain model
 - Multiple videos/audio by same lecturer for speaker model
 - Diverse topics/disciplines
 - Improve search and retrieval (more granularity)
 - English transcripts can facilitate translation
- MIT 150th Celebration (AMPS)
 - Highly produced, individual speakers
 - Full transcripts available
 - Facilitate search



External Customers/Interest

- University of Queensland
 - Lecture podcasting
 - 25 years of interviews with world-class scientists, Australian Broadcasting Company
- UC Berkeley
 - Lecture podcasting, 500+ hours of new content per term
 - Improve search and retrieval
- OpenCast Project (<u>www.opencast.org</u>)
 - Extend generic podcast production workflow
- Harvard University Extension
 - 100th Anniversary

Office of Educational Innovation and Technolo

Lecture Transcription Workflow

Demo

- Spoken Lecture Browser
 - web.sls.csail.mit.edu/lectures
 - Requires Real Player 10
- Alternate UI, Google Audio Indexing
 - labs.google.com/gaudi
 - U.S. political coverage (2008 elections, CSPAN)

Lecture Browser Spoken Language systems MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY Search for words: angular momentum Any category Examples: violin, "solar system", wine AND glass	Help About Login Back
50 results for angular momentum	
1. Angular Momentum, Torques, Conservation of Angular Momentum, Spinning Neutron Stars, Stellar Collapse Lecture 20, Physics I: Classical Mechanics, Physics, MIT, 51:05 1999 (Walter Lewin)	
 we're now answering the part of eight oh one which is the most difficult for students and faculty alike we are going to enter the domain of angular momentum and forks it's extremely non intuitive the good news however is that b will stay with this concept for at least four five lectures today i will 	we're now answering the <u>part</u> of eight oh one which is the most difficult for students and faculty alike we are going to enter the domain of <u>angular momentum</u> and forks it's extremely non intuitive the good news however is that b will stay with this concept for at least four five lectures today i will introduce both fork an <u>angular momentum</u> what is <u>angular momentum</u> if an object has a momentum what is avelocity v then clearly it has a <u>momentum</u> v that's very well defined your reference frame the product of m and v thank the <u>momentum</u> i can take relative to any point i choose i choose
the good news however is that b will stay with this concept for at least four five lectures today i will introduce both fork an angular momentum what is angular momentum if an object has a mass m and it has a velocity v then clearly it has a momentum v that's very well defined your reference frame the product of m and v thank the momentum i can take relative to any point i choose i choose this point g arbitrary this now is the position	this point q arbitrary this now is the position vector which i call our of q but this angle buffet to an angular momentum relative to that point q it's a vector or is the position vector relative to that point q cross p so it is our of q cross v and then times m the magnitude ah of the angular momentum relative to point q is of course are m v that then i have to take the sine of the angle so let's say b is m v r sine fate a and this i often call short hand notation are
this now is the position vector which i call our of q but this angle buffet to an angular momentum relative to that point q it's a vector or is the position vector relative to that point q cross p	perpendicular that are perpendicular is the systems relative to point c what you just saw may have confuse you infer could reason because i change by index q to see and there is no see the index is should all be q of course so these are is the length of this vector is the magnitude of this vector

A Lecture Transcription Service?

- Under consideration
- Limitations (anticipated, may change)
 - Lecture-style content (technology optimized)
 - Approximately 80% accuracy
 - Probably NOT full accessibility solution
 - Other languages? (not sure)
 - Browser open-sourced (expected)
 - Processing hosted/limited to MIT (current thinking)
 - So will submit jobs via MIT-run service
 - Audio extract, domain models and transcripts available donated for further research

Thanks!

Brandon Muramatsu

mura@mit.edu

MIT, Office of Educational Innovation and Technology

Citation: Muramatsu, B. (2009). Automated Lecture Transcription. Presented at the OpenCourseWare Global Meeting. Monterrey, Mexico. April 22, 2009.

